EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

12CI425A DISPENSER

DES. **J. ROBERSON**JOB NO. 11-1420

1

DATE 5/9/14

2 SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

 $T_u = 196 LB/BOLT (MAX)$ $V_u = 81 LB/BOLT (MAX)$

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED.

HORIZONTAL FORCE (Eh) = 1.80 Wp (SDS = 2.5, 2p = 1.0, p = 1.5, p = 2.5, p = 2.5, p = 1.0, p = 1.5, p = 2.5, p = 1.0, p = 1.5, p = 2.5, p = 1.0, p = 1.5, p = 2.5, p = 1.0, p = 1.5, p = 2.5, p = 1.0, p = 1.5, p = 2.5, p = 1.0, p = 1.5, p = 1.5

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

12CI425A DISPENSER

DES. J. ROBERSON 11-1420 JOB NO. 5/9/14

DATE

SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.5, 2p = 1.0, 1p = 1.5, 1p = 2.5, 1p = 2.5,

WEIGHT = 156 LB

HORIZONTAL FORCE (En) = 1.80 Wp = 281 LB

VERTICAL FORCE (E_V) = 0.50 W_P = 78 LB

BOLT FORCES:

BOLT SPEC: 3/8"\$ (A307) BOLTS

ΦT= 3589 LB/BOLT

ΦV= 1914 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{281\#(15.56'')(8.3'')}{1 \text{ BOLT } (15.92'')(14.37'')} \times (0.3) \right] + \frac{281\#(15.56'')(8.84'')}{1 \text{ BOLTS} (15.92'')(14.37'')} - \frac{(156\#(0.9) - 78\#)(8.3'')(8.84'')}{1 \text{ BOLT } (14.37'')(15.92)} = 196 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SDE TO SDE}) \qquad (\text{0.9WEIGHT) - Ev})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{281\#(8.3")}{2 \text{ BOLTS}(14.37")} = 81 \text{ LB/BOLT (MAX)}$$