EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 Cl425 A/W DISPENSERS

DES. J. ROBERSON

11-1420

DATE 6/10/14

JOB NO.

1

SHEET

SHEETS

SEISMIC ANCHORAGE

SLAB ON GRADE

No. 4197

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDS = 2.30, α_p = 1.0, p_p = 1.5, p_p = 2.5, p_p = 2.

HORIZONTAL FORCE (En) = 1.035 Wp HORIZONTAL FORCE (Emh) = 2.59 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.46 Wp

2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.

3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

MAX WT

276

271

249

244

FOLLETT CORPORATION

11-1420 JOB NO.

DES. J. ROBERSON

Tυ

569

559

514

503

25/50 CI425 A/W DISPENSERS

6/10/14 DATE

SHEETS

Vυ

95

94

86

84

SEISMIC ANCHORAGE SLAB ON GRADE

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.30, Δ_p = 1.0, I_p = 1.5, R_p = 2.5, Ω_0 = 2.5, z/h = 0)

WEIGHT = 276 LB

HORIZONTAL FORCE (Emh) = 2.59 Wp = 715 LB

VERTICAL FORCE (E_v) = 0.46 W_p = 127 LB

BOLT FORCES:

BOLT SPEC: 1/4"ø HILTI HUS -EZ

 $\Phi T = 0.75 \Phi Nn = 623 LB/BOLT (TENSION)$

 $\Phi V = \Phi V n = 836 LB/BOLT (SHEAR)$

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{715\#(45')'(9.56'')}{2 \text{ BOLTS}(19.25'')(18.75'')} \times (0.3) \right] + \frac{715\#(45'')(10.28'')}{2 \text{ BOLTS}(18.75'')(19.25'')} - \frac{(276\#(0.9) - 127\#)(10.28'')(9.56'')}{2 \text{ BOLTS}(19.25'')(18.75'')} = 569 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ} - \text{FRONT TO BACK}) \qquad (\text{HORIZ} - \text{SDE TO SDE}) \qquad (\text{09WBGHT)} - \text{EV})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{715\#(10.28")}{4 \text{ BOLTS}(19.25")} = 95 \text{ LB/BOLT (MAX)}$$

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

6/10/14

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 CI425 A/W DISPENSERS

DES. J. ROBERSON

11-1420 JOB NO.

DATE

SHEETS

No. 4197 EXP. 6-30-2016

SHEET

SEISMIC ANCHORAGE

UPPER FLOOR

NOTES:

 FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED. (Sps = 2.50, 2p = 1.0, p = 1.5, 2p = 2.5, 2p

> HORIZONTAL FORCE (En) = 1.80 Wp VERTICAL FORCE (Ev) = 0.50 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

OF

FOLLETT CORPORATION

25/50 Cl425 A/W DISPENSERS

DES. J. ROBERSON

ЈОВ NO. 11-1420

DATE 6/10/14

2

SHEETS

SEISMIC ANCHORAGE

UPPER FLOOR

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.5, Ap = 1.0, Ip = 2.5, Rp = 2.5, $\mathrm{z/h} \leq 1$)

WEIGHT = 276 LB

HORIZONTAL FORCE (En) = 1.80 Wp = 497 LB

VERTICAL FORCE (E_v) = 0.50 W_p = 138 LB

BOLT FORCES:

BOLT SPEC: 1/4"ø (A36) THREADED ROD

φT= 1599 LB/BOLT

ΦV= 853 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{497 \# (45'') (9.56'')}{2 \text{ BOLTS} (19.25'') (18.75'')} \times (0.3) \right] + \frac{497 \# (45'') (10.28'')}{2 \text{ BOLTS} (18.75'') (19.25'')} - \frac{(276 \# (0.9) - 138 \#) (10.28'') (9.56'')}{2 \text{ BOLTS} (19.25'') (18.75'')} = 392 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SDE TO SDE}) \qquad (\text{0.90WEGHT}) - \text{EV}$$

SHEAR (V)

$$V_{\text{U MAXIMUM}} = \frac{497 \# (10.28'')}{4 \text{ BOLTS} (19.25'')} = 66 \text{ LB/BOLT (MAX)}$$