EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

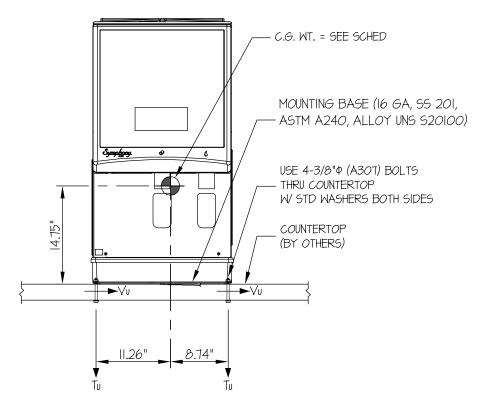
FOLLETT CORPORATION

25/50 CI/CR 425 A/W DISPENSERS

DES. J. ROBERSON
JOB NO. 11-1420

DATE

5/27/14


1

SHEETS

of **2**

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

FRONT ELEVATION

NOTES:

- FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDS = 2.5, Ap = 1.0, Ip = 1.5, Rp = 2.5, z/h ≤ 1) HORIZONTAL FORCE (Eh) = 1.80 Wp VERTICAL FORCE (Ev) = 0.50 Wp
- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

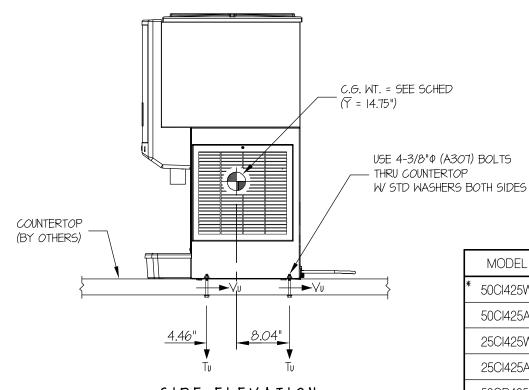
FOLLETT CORPORATION

DES. J. ROBERSON

11-1420

2

25/50 CI/CR 425 A/W DISPENSERS


DATE 5/27/14

JOB NO.

2 SHEETS

SEISMIC ANCHORAGE

COUNTERTOP MOUNTED

	MODEL	MAX WT	Τυ	Vυ
*	50Cl425W	241	315	140
	50Cl425A	236	308	137
	25Cl425W	214	280	124
	25Cl425A	209	273	121
	50CR425	150	196	87
	25CR425	123	161	71

<u> SIDE ELEVATION</u>

<u>LOADS:</u> PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10. (STRENGTH DESIGN IS USED) (SDs = 2.5, 2p = 1.0, 1p = 1.5, 1p = 1.5,

WEIGHT = 241 LB

HORIZONTAL FORCE (En) = 1.80 W_p = 434 LB

VERTICAL FORCE (E_v) = 0.50 W_p = 121 LB

BOLT FORCES:

BOLT SPEC: 3/8"ø (A307) BOLTS

φT= 3589 LB/BOLT

* USED IN CALCULATION

ΦV= 1914 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{272 \# (14.75'')(8.04'')}{1 \text{ BOLT } (20'')(12.5'')} \times (0.3) \right] + \frac{272 \# (14.75'')(11.26'')}{1 \text{ BOLT } (12.5'')(20'')} - \frac{(241 \# (0.9) - 121 \#)(11.26'')(8.04'')}{1 \text{ BOLT } (20'')(12.5)} = 315 \text{ LB/BOLT } (\text{MAX})$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SDE TO SIDE}) \qquad (0.9) \text{WEIGHT) - E.}$$

SHEAR (V)

$$V_{U MAXIMUM} = \frac{272\#(8.04")}{2 \text{ BOLTS}(12.5")} = 140 \text{ LB/BOLT (MAX)}$$